Unconventional Myosins: How Regulation Meets Function
نویسندگان
چکیده
منابع مشابه
Unconventional myosins acting unconventionally.
Unconventional myosins are proteins that bind actin filaments in an ATP-regulated manner. Because of their association with membranes, they have traditionally been viewed as motors that function primarily to transport membranous organelles along actin filaments. Recently, however, a wealth of roles for myosins that are not obviously related to organelle transport have been uncovered, including ...
متن کاملCargo recognition and cargo-mediated regulation of unconventional myosins.
Organized motions are hallmarks of living organisms. Such motions range from collective cell movements during development and muscle contractions at the macroscopic scale all the way down to cellular cargo (e.g., various biomolecules and organelles) transportation and mechanoforce sensing at more microscopic scales. Energy required for these biological motions is almost invariably provided by c...
متن کاملUnconventional Myosins in Inner-Ear Sensory Epithelia
To understand how cells differentially use the dozens of myosin isozymes present in each genome, we examined the distribution of four unconventional myosin isozymes in the inner ear, a tissue that is particularly reliant on actin-rich structures and unconventional myosin isozymes. Of the four isozymes, each from a different class, three are expressed in the hair cells of amphibia and mammals. I...
متن کاملDifferential Regulation of Unconventional Fission Yeast Myosins via the Actin Track
BACKGROUND Fission yeast possesses three unconventional myosins: Myo1p (a class I myosin that functions at endocytic actin patches) and Myo51p and Myo52p (class V myosins that function at contractile rings and actin cables, respectively). Here we used a combination of in vivo and in vitro approaches to investigate how changes in the actin track influence the motor activity and spatial regulatio...
متن کاملUnconventional myosins, the basis for deafness in mouse and man.
Myosins are molecular motors that use the energy from ATP hydrolysis to generate force and move along actin filaments. Conventional myosin, or myosin-II, has the specialized ability to form bipolar filaments and is the basis for muscle contraction. Mutations in conventional myosins have been observed in man; dominant cardiomyopathies arise from mutations in P-cardiac myosin-II and other myosin-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Molecular Sciences
سال: 2019
ISSN: 1422-0067
DOI: 10.3390/ijms21010067